
Genomic Distance with DCJ and Indels

Maŕılia D. V. Braga, Eyla Willing, and Jens Stoye

Technische Fakultät, Universität Bielefeld, Germany.
mbraga@cebitec.uni-bielefeld.de, eyla@cebitec.uni-bielefeld.de,

stoye@techfak.uni-bielefeld.de

Abstract. The double cut and join (DCJ) operation, introduced by
Yancopoulos, Attie and Friedberg in 2005, allows one to represent most
rearrangement events in genomes. However, a DCJ cannot perform an
insertion or a deletion and most approaches under this model consider
only genomes with the same content and without duplications, including
the linear time algorithms to compute the DCJ distance and to find an
optimal DCJ sorting sequence. In this work, we compare two genomes
with unequal content, but still without duplications, and present a new
linear time algorithm to compute the genomic distance, considering DCJ
and indel operations. With this method we find preliminary evidence of
the occurrence of clusters of deletions in the Rickettsia bacterium.

1 Introduction

The double cut and join (DCJ) is an abstract rearrangement operation, intro-
duced by Yancopoulos et al. in 2005 [5], that allows to represent most large scale
mutation events, such as inversions, translocations, fusions and fissions, that
can occur in genomes. No restriction on the genome structure considering linear
and circular chromosomes is imposed. An advantage of this general model is
that it leads to considerable algorithmic simplifications. However, a DCJ cannot
perform an insertion or a deletion and most studies concerning DCJ consider
genomes with the same content and without duplications. With these restric-
tions, linear time algorithms have been proposed to compute the DCJ distance
and to find an optimal DCJ sorting sequence [1].

In 2008, Yancopoulos and Friedberg [4] proposed an extension of the DCJ
paradigm, to include operations performing insertions and deletions, in order to
deal with genomes having unequal content. The authors introduced some con-
cepts, but left open the design of an algorithm to handle this problem, which
is the subject of this study. We propose an approach in which the cost of an
insertion or deletion is the same as that of a DCJ, where several consecutive
markers can be inserted or deleted in a single event. Therefore, we generalize the
adjacency graph, introduced by Bergeron et al. [1], by incorporating the repre-
sentation of the markers that occur in only one of the two genomes. We then
design a linear time algorithm to compute the distance between two genomes
with unequal content, but still without duplications, taking into consideration
DCJ operations, insertions and deletions. We used this method to do an inter-
esting analysis of a group of bacterial genomes, as described in the last section.

2 DCJ, Adjacency Graph and Indels

In this work, duplications are not allowed. Thus, given a genome A over a set of
markers GA, each g in GA occurs exactly once in A. Furthermore, each marker g

is a DNA fragment and can be either read in direct orientation and represented
by the symbol g, or read in reverse orientation and represented by the symbol g.
We have g = g and, for any set F , we define F̂ = F ∪F , where F = {f | f ∈ F}.

Let A be a genome, possibly composed of linear and circular chromosomes.
From each chromosome C of A we can build a string s over ĜA, obtained by the
concatenation of all symbols in C, read in any of the two directions. Each end of
a linear chromosome is called a telomere, represented by the symbol ◦. Thus, if C
is linear, it is represented by ◦s◦. If C is circular, it is simply represented by s

(we can start to build s in any symbol of C). A genome A with k chromosomes
can be represented by a set of k strings and an example is given in Fig. 1.

A - - - - - � - - �a e x c d y b z w

Fig. 1. In this graphic representation of genome A = {◦aexc◦, ◦dyb◦, ◦zw◦}, composed
of three linear chromosomes, each arrow represents a marker and its orientation.

In the following we generalize definitions introduced by Bergeron et al. [1].
Given a genome A over GA and a subset G ⊆ GA, for each g ∈ G we denote its

two extremities by gt (tail) and gh (head). A G-adjacency is in general a linear
string v = γ1ℓγ2, such that γ1 and γ2 are telomeres or extremities of markers
in G and ℓ, the substring composed of the markers that are between γ1 and γ2

in A, contains no marker that also belongs to G. The substring ℓ is said to be
the label of v, and the extremities γ1 and γ2 are said to be G-adjacent. If ℓ

is a non-empty string, v is said to be labeled, otherwise v is said to be clean.
Observe that a G-adjacency γ1ℓγ2 can also be represented by γ2ℓγ1. Moreover,
a labeled G-adjacency u = ◦ℓ◦ indicates that A contains a linear chromosome
composed only of markers that are not in G, that is, u corresponds to a whole
linear chromosome. In the same way, if s is a circular chromosome in A composed
only of markers that are not in G, then s is also a G-adjacency. This is the only
special case of G-adjacency in which we have a circular instead of a linear string.

A genome A can be then represented by the set VG(A) containing its G-
adjacencies. For example, if G = {a, b, c, d, e}, the genome in Fig. 1 has the rep-
resentation VG(A) = {◦at, ahet, ehxct, ch◦, ◦dt, dhybt, bh◦, ◦zw◦}. However, for
G′ = GA = {a, b, c, d, e, x, y, z, w}, we have only clean adjacencies in VG′ (A) =
{◦at, ahet, ehxt, xhct, ch◦, ◦dt, dhyh, ytbt, bh◦, ◦zt, zhwh, wt◦}.

A cut performed on a genome A separates two adjacent markers of A. A cut
affects a G-adjacency v of VG(A) as follows: if v is linear, the cut is done between
two symbols of v, creating two open ends in two separate linear strings; if v is
circular, the cut creates two open ends in one linear string. A double-cut and

join or DCJ applied on a genome A is the operation that performs two cuts

r r r r r r r r

A ◦at ahet ehxct ch◦ ◦dt dhybt
bh◦ ◦zw◦

r r r r r r

B ◦at ahbt bhct chdt dhet eh◦

C
C
CC

C
C
CC

aaaaaaaaa

C
C
CC

aaaaaaaaa

C
C
CC

�
�

��

����������

�
�

��

����������

Fig. 2. For genomes A = {◦aexc◦, ◦dyb◦, ◦zw◦} and B = {◦abcde◦}, the adjacency
graph contains one cycle, two AA-paths (one is a linear singleton) and two AB-paths.

in VG(A), creating four open ends, and joins these open ends in a different way.
As an example, considering the genome A from Fig. 1 and G = {a, b, c, d, e}, if
we apply a DCJ on ahet and dhybt of VG(A) we can create ahbt and dhyet.

Observe that, if the two original G-adjacencies are γ1ℓ1◦ and γ2ℓ2◦, we can
create γ1ℓ1ℓ2γ2 and ◦◦. Conversely, a DCJ operation can be applied to ◦◦
and γ1ℓγ2, creating, for example, γ1ℓ◦ and γ2◦. These are special cases of the
DCJ operation, and the clean G-adjacency ◦◦ is also called null linear chromo-

some [5]. There are also two special cases of a DCJ that change only labels and
circular G-adjacencies: when one of the two cuts is on a circular G-adjacency s,
the result will be a single G-adjacency v and s will be integrated into the label
of v. Conversely, when both cuts of a DCJ are applied to the same G-adjacency,
we would have either an inversion in its label or an excision of a circular G-
adjacency. With respect to the structure of the involved chromosomes, a DCJ
operation can correspond to several events, such as an inversion, a translocation,
a fusion, or a fission. In addition a DCJ can also correspond to an excision or
an integration of a circular chromosome [1].

Given a genome A over GA and a genome B over GB with G = GA ∩ GB, the
adjacency graph AG(A, B) is the graph that has a vertex for each G-adjacency
in VG(A) and a vertex for each G-adjacency in VG(B). Then, for each g ∈ G, we
have one edge connecting the vertex in VG(A) and the vertex in VG(B) that con-
tain gh and one edge connecting the vertex in VG(A) and the vertex in VG(B) that
contain gt. Due to the 1-to-1 correspondence between the vertices of AG(A, B)
and the G-adjacencies in VG(A) and VG(B), we can identify each adjacency with
its corresponding vertex.

We know that AG(A, B) is composed of two types of connected components,
cycles and paths, alternating vertices in VG(A) and VG(B) [1]. A path that has
one endpoint in VG(A) and the other in VG(B) is called an AB-path. In the same
way, both endpoints of an AA-path are in VG(A), as well as both endpoints of
a BB-path are in VG(B). Furthermore, the adjacency graph can have two extra
types of components: each G-adjacency that corresponds to a linear (respect.
circular) chromosome is a linear (respect. circular) singleton. Observe that linear
singletons are particular cases of AA-paths and BB-paths. If GA = GB = G, the
adjacency graph is composed only of clean G-adjacencies, has no singletons and
is said to be clean. An example of an adjacency graph is given in Fig. 2.

Singletons, AB-paths composed of one single edge, and cycles composed of
two edges are said to be DCJ-sorted. Longer paths and cycles are said to be

DCJ-unsorted. We call DCJ-sorting of A into B the procedure of using DCJ
operations to turn AG(A, B) into DCJ-sorted components. The DCJ distance

of A and B, denoted by dDCJ(A, B), corresponds to the minimum number of
steps required to do a DCJ-sorting of A into B and can be easily obtained:

Theorem 1 ([1]). Given a genome A over GA and a genome B over GB , we

have dDCJ(A, B) = n−c− b
2 , where n is the number of markers in G = GA∩GB,

and c and b are, respectively, the number of cycles and AB-paths in AG(A, B).

Bergeron et al. [1] observed that the number of AB-paths in AG(A, B) is
even and that an optimal DCJ operation either increases the number of cycles
by one, or the number of AB-paths by two (decreasing the DCJ distance by
one). In the same way, a neutral operation does not affect the number of cycles
and AB-paths in the graph, while a counter-optimal operation either decreases
the number of cycles by one, or the number of AB-paths by two. The problem
of finding an optimal sequence of operations that do a DCJ-sorting of A into B

can be solved with a simple greedy linear time algorithm [1].

Now let A be the set of markers that occur only in genome A and let B
be the set of markers that occur only in genome B, that is, A = GA \ GB and
B = GB \GA. The markers in A and B are represented in AG(A, B) as labels and
singletons, but they are simply ignored by the approaches to compute the DCJ
distance and sorting sequence, mentioned above. However, in order to completely
sort A into B, the markers in A have to be deleted, while the markers in B have
to be inserted. No DCJ operation is actually able to do an insertion or a deletion.
Moreover, no operation is able to delete and insert at the same time (such an
event would be a replacement, which is not accepted in the model we consider).
Thus, for the purpose of this study, an operation is either a DCJ operation,
or an insertion, or a deletion. We will refer to insertions and deletions as indel

operations. A DCJ and an indel operation have the same cost and we define
the DCJ-indel distance of A and B, denoted by did

DCJ(A, B), as the minimum
number of DCJ and indel operations required to transform A into B.

We can then establish a first simple upper bound for the DCJ-indel distance:

Observation 1 Given a genome A over GA and a genome B over GB, we have

did
DCJ(A, B) ≤ dDCJ(A, B) + |A| + |B|, where A = GA \ GB and B = GB \ GA.

3 Accumulating Runs with Optimal DCJ Operations

Observe that a G-adjacency with a non-empty label ℓ can be cut in at least two
different positions, either before or after ℓ. Since the position of the cut does
not change the effect of the DCJ operation on dDCJ(A, B), we can choose to
cut at positions that allow the concatenation of the labels of the original G-
adjacencies. As a consequence, a set of labels in G-adjacencies of genome A can
be first accumulated with DCJ operations and later deleted at once. In the same
way, a set of labels in G-adjacencies of genome B can be first inserted at once
as a cluster and later split with DCJ operations, as we can see in Fig. 3.

(i) (ii)

- -� -a x b y

↓ deletion

-� -a b y

deletion ↓

-�a b

inversion ↓

- -a b

- -� -a x b y

↓ inversion

- -� -a b x y

deletion ↓

- -a b

- -a b

inversion ↓

-�a b

insertion ↓

- -�a x b

insertion ↓

- -� -a x b y

- -a b

↓ insertion

- -� -a x y b

inversion ↓

- -� -a x b y

Fig. 3. (i) Two different scenarios sorting {◦axby◦} into {◦ab◦}. In the left we have two
separate deletions and an optimal DCJ (inversion). In the right, we first perform the
inversion, accumulating x and y, so that they can be deleted at once, saving one step.
(ii) Conversely, while sorting {◦ab◦} into {◦axby◦}, instead of two insertions (left), we
can insert a cluster at once and later split it with an inversion (right), saving one step.

Due to the following observation, without loss of generality, we allow oper-
ations on both genomes A and B, in order to be able to concatenate labels in
G-adjacencies of both genomes. Regarding the operations applied on genome B,
this approach can be seen as a backtracing to find the best moment to do a
cluster insertion in genome A. An algorithm sorting genome A into B can be
derived from this approach.

Observation 2 Given two genomes A and B, any pair of sequences s1 and s2

composed of DCJ and indel operations acting on both genomes A and B, trans-

forming respectively A and B into an intermediate genome I, has a corresponding

sequence acting only on genome A, that is, transforming A into B, with length

|s1| + |s2|.

Given a component C of AG(A, B), we can obtain a string ℓ(C) by the
concatenation of the labels of the G-adjacencies of C in the order in which they
appear. Cycles, AA-paths and BB-paths can be read in any direction, but AB-
paths should always be read from A to B. If C is a cycle and has labels in
both genomes A and B, we should start to read in a labeled G-adjacency v

of genome A, such that the first labeled vertex before v is a G-adjacency in
genome B; otherwise C has labels in at most one genome and we can start
anywhere. Each maximal substring of ℓ(C) in Â+ (respectively in B̂+) is called
an A-run (respectively a B-run). Each A-run or B-run can be simply called a
run. A component composed only of clean G-adjacencies has no run and is said
to be clean, otherwise the component is labeled. We denote by Λ(C) the number
of runs in a component C. A path can have any number of runs, while a cycle
has zero, one, or an even number of runs. Fig. 4 shows a BB-path with 4 runs.

Proposition 1. If γ1γ2 is a clean G-adjacency in a DCJ-unsorted component C

of AG(A, B), such that neither γ1 nor γ2 are telomeres, then it is always possible

to extract a clean cycle from C with an optimal DCJ operation.

Proof. If γ1γ2 is in VG(B), we apply a DCJ on the two vertices γ1ℓ1γ3 and γ2ℓ2γ4

of VG(A) that are neighbors of γ1γ2, creating the two new vertices γ3ℓ1ℓ2γ4 and

q q q q q q

ℓ1 ℓ2 ℓ5

q q q q q q q

︸ ︷︷ ︸
A-run

ℓ3 ℓ4︸ ︷︷ ︸
B-run

︸︷︷︸
A-run

ℓ6 ℓ7︸ ︷︷ ︸
B-run

�
�

S
S

�
�

S
S

�
�

S
S

�
�

S
S

�
�

S
S

�
�

S
S

Fig. 4. A BB-path with 4 runs. Only the labels of the G-adjacencies are represented.

γ1γ2. Observe that the vertex γ1γ2 in VG(B) and the new vertex γ1γ2 in VG(A)
are extracted into a clean cycle. Analogously, if γ1γ2 is in VG(A), we do the same
procedure using the two vertices of VG(B) that are neighbors of γ1γ2. ⊓⊔

Proposition 2. A run can be entirely accumulated in the label of one single

G-adjacency with optimal DCJ operations.

Proof. A run that is not yet accumulated is distributed over two or more G-
adjacencies in one genome. The G-adjacencies in the other genome within the
run are clean. We can thus apply optimal DCJs that extract clean cycles (Propo-
sition 1) and accumulate the entire run in the label of one G-adjacency. ⊓⊔

Proposition 2 immediately gives a tighter upper bound for the distance:

Lemma 1. Given two genomes A and B without duplications, we have

did
DCJ (A, B) ≤ dDCJ(A, B) +

∑

C∈AG(A,B)

Λ(C).

4 Merging Runs in One Component

For some instances of A and B, the upper bound of Lemma 1 gives the exact
number of steps required to sort A into B. However, since two runs can be
merged together with a DCJ operation, the DCJ-indel distance is often smaller
than this upper bound. Given a DCJ operation ρ, let Λ0 and Λ1 be, respectively,
the number of runs in AG(A, B) before and after ρ. We define ∆Λ(ρ) = Λ1−Λ0.

Proposition 3. Given any DCJ operation ρ, we have ∆Λ(ρ) ≥ −2.

Proof. If ρ cuts between an A-run r1 and a B-run r2 and between an A-run r3

and a B-run r4, with r1 6= r3 and r2 6= r4, and joins r1 with r3 and r2 with r4,
then ∆Λ(ρ) = −2. As a DCJ has at most two cuts and two joins, it is not
possible to do better, that is ∆Λ(ρ) ≥ −2. ⊓⊔

In order to obtain the exact formula for the DCJ-indel distance, we will first
analyze the components of the adjacency graph separately. Given two genomes A

and B and a component C ∈ AG(A, B), we denote by dDCJ(C) the minimum
number of DCJ operations required to do a separate DCJ-sorting in C, applying
DCJs only on vertices of C (or vertices that result from DCJs applied on vertices

that were in C). From [3], we know that it is possible to do a separate DCJ-
sorting using only optimal DCJs in any component of AG(A, B), or, in other
words, dDCJ (A, B) =

∑
C∈AG(A,B) dDCJ (C). Moreover, we denote by λ(C) the

minimum number of runs that we can obtain doing a separate DCJ-sorting in C

with optimal DCJ operations. We then have:

Proposition 4. Given a component C in AG(A, B), we have λ(C) = ⌈Λ(C)+1
2 ⌉,

if Λ(C) ≥ 1. Otherwise λ(C) = 0.

Proof. The proof is by induction on i = Λ(C) and the hypothesis is T (i) = ⌈ i+1
2 ⌉.

A labeled DCJ-sorted component can have one or two runs, thus we need two
base cases, T (1) = 1 and T (2) = 2. These cases can be easily verified. More
intricate is the inductive step, for i ≥ 3.

When i ≥ 3 is odd, we can merge the first and the last runs with an optimal
DCJ, obtaining a cycle with i − 1 runs. This gives T (i) = T (i − 1) = i−1+2

2 =

⌈ i+1
2 ⌉. If i ≥ 5, we can also do an optimal DCJ that has ∆Λ = −2, extracting

a cycle with even i′ ≥ 2 runs and leaving the path with odd i′′ ≥ 1 runs, such
that i = i′ + i′′ + 2 and T (i) = T (i′) + T (i′′) = i′+2

2 + i′′+1
2 = i+1

2 = ⌈ i+1
2 ⌉.

When i ≥ 4 is even, any optimal DCJ merging runs would extract a cycle
with even i′ ≥ 2 runs and leave the other component with i′′ ≥ 1 runs. One way
is to do a DCJ that has ∆Λ = −1, such that i = i′ + i′′ + 1 and i′′ ≥ 1 is odd.
This gives T (i) = i′+2

2 + i′′+1
2 = i+2

2 = ⌈ i+1
2 ⌉. If i ≥ 6, it is also possible to do

a DCJ that has ∆Λ = −2, such that i = i′ + i′′ + 2 and i′′ ≥ 2 is even. We
then have T (i) = i′+2

2 + i′′+2
2 = i+2

2 = ⌈ i+1
2 ⌉. (All other optimal DCJs applied

between runs of components with Λ ≥ 3 would lead to greater values of λ.) ⊓⊔

If λ0 and λ1 are, respectively, the sum of the number λ for the components
of the adjacency graph before and after ρ, we define ∆λ(ρ) = λ1 − λ0. By the
definition of λ, any optimal DCJ ρ acting on a single component has ∆λ(ρ) ≥ 0.
However, considering the case in which only one component is affected by ρ, we
still need to investigate ∆λ(ρ) when ρ is counter-optimal or neutral.

Proposition 5. Given a DCJ operation ρ acting on a single component, we

have ∆λ(ρ) ≥ 0, if ρ is counter-optimal, or ∆λ(ρ) ≥ −1, if ρ is neutral.

Proof. The linearization of a cycle is the only counter-optimal DCJ that acts on
a single component. This can decrease neither Λ, nor λ. Moreover, when Λ ≤ 2,
it is not possible to decrease the number λ with any DCJ. When the component
has Λ = 3, the best we can get with a neutral ρ is ∆Λ(ρ) = −1. This gives

λ1 = ⌈ (3−1)+1
2 ⌉ = ⌈ 3

2⌉ = ⌈ 3+1
2 ⌉ = λ0, that is, ∆λ(ρ) = 0. And when the

component has Λ ≥ 4, we can get ∆Λ(ρ) = −2 with a neutral ρ, resulting in

λ1 = ⌈ (Λ(C)−2)+1
2 ⌉ = ⌈Λ(C)+1

2 ⌉ − 1 = λ0 − 1, that is, ∆λ(ρ) = −1. ⊓⊔

We denote by did
DCJ(C) the minimum number of DCJ and indel operations

required to sort separately a component C of AG(A, B).

Proposition 6. If C is a component of AG(A, B), then we have did
DCJ(C) =

dDCJ(C) + λ(C).

Proof. By the definition of λ, the best we can do with optimal DCJs is dDCJ(C)+
λ(C). From Proposition 5, we know that ∆λ(ρ) ≥ 0 if ρ is a counter-optimal
DCJ, thus we can only get longer sorting scenarios if we use such operations.
We also know that ∆λ(ρ) ≥ −1 if ρ is neutral, and, since this kind of operation
increases the sorting scenario by one with respect to the scenario with only
optimal DCJs, this gives at least dDCJ(C) + λ(C). ⊓⊔

Proposition 6 gives a new upper bound for the DCJ-indel distance:

Lemma 2. Given two genomes A and B without duplications, we have

did
DCJ(A, B) ≤ dDCJ(A, B) +

∑

C∈AG(A,B)

λ(C).

Proof. We can sort the components separately with
∑

C∈AG(A,B) did
DCJ(C) steps,

which corresponds exactly to dDCJ(A, B) +
∑

C∈AG(A,B) λ(C). ⊓⊔

Since λ(C) ≤ Λ(C), the upper bound given by Lemma 2 is tighter than the
one given by Lemma 1, but can still be improved. Observe that a parsimonious
scenario may not simply consist of optimal DCJ operations, insertions and dele-
tions. Sometimes a neutral DCJ can lead to a shorter sequence of operations
sorting one genome into another, as we can see in Fig. 5.

(i) (ii) (iii)

- - - -a b c d
↓ fission

- - - -a b c d

fission ↓

- - - -a b c d

- - - - - -a x b c y d
↓ fission

- - - - - -a x b c y d

↓ deletion

- - - - -a b c y d
↓ insertion

- - - - - -a u b c y d

fission ↓

- - - - - -a u b c y d

deletion ↓

- - - - -a u b c d

insertion ↓

- - - - - -a u b c v d

- - - - - -a x b c y d
translocation ↓

- -� � � -a x y c b d

insertion ↓

- -� � � � - -a x y c b u v d
fission ↓

- -� � - - - -a x y c u b v d

↓ deletion

-� - - - -a c u b v d

↓ fission

- - - - - -a u b c v d

Fig. 5. An optimal scenario sorting {◦ab◦, ◦cd◦} into {◦a◦, ◦b◦, ◦c◦, ◦d◦} (i) and two
different scenarios sorting {◦axb◦, ◦cyd◦} into {◦a◦, ◦ub◦, ◦c◦, ◦vd◦}. In (ii) in addition
to the two optimal DCJ operations (fissions) from (i) we have two insertions and two
deletions, using six steps. In (iii) we first use a neutral DCJ operation (translocation)
that allows us to do only one deletion and one insertion, achieving a total of five steps.

5 Recombinations and the DCJ-indel Distance

A DCJ operation ρ that acts on two components is called recombination and can
have ∆λ(ρ) = −2. The two components on which the cuts are applied are called

Table 1. Path recombinations that have ∆d ≤ −1 and allow the best reuse of the
resultants. Optimal recombinations are in the left, neutral recombinations in the right.

sources resultants ∆λ ∆dcj ∆d

AAAB + BBAB AB• + AB• −2 0 −2

AAA + BBAB AB• + ABAB −1 0 −1
BBA + AAAB AB• + ABBA −1 0 −1
AAB + BBAB AB• + ABBA −1 0 −1
BBB + AAAB AB• + ABAB −1 0 −1

AAA + BBA AB• + AB• −1 0 −1
AAB + BBB AB• + AB• −1 0 −1

sources resultants ∆λ ∆dcj ∆d

AAAB + AAAB AAA + AAB −2 +1 −1
BBAB + BBAB BBA + BBB −2 +1 −1

AAAB + ABAB AB• + AAA −2 +1 −1
AAAB + ABBA AB• + AAB −2 +1 −1
BBAB + ABAB AB• + BBB −2 +1 −1
BBAB + ABBA AB• + BBA −2 +1 −1

ABAB + ABBA AB• + AB• −2 +1 −1

sources and the components obtained after the joinings are called resultants of
the recombination.

Proposition 7. Given any recombination ρ, we have ∆λ(ρ) ≥ −2.

Proof. Only the recombinations that decrease or do not change the number of
runs (∆Λ ≤ 0) have to be analyzed (we can not have ∆λ ≤ −1 if the number of
runs increases). First consider the recombination of two paths with i and j runs,
respectively, that result in two new paths with i′ and j′ runs. Observe that the
best we can have is when i and j are even, i′ and j′ are odd and ∆Λ = −2, that

gives: λ1 = ⌈ i′+1
2 ⌉+ ⌈ j′+1

2 ⌉ = i′+j′+2
2 = i+j

2 = i
2 + j

2 = ⌈ i+1
2 ⌉ − 1 + ⌈ j+1

2 ⌉ − 1 =
λ0 − 2. The analysis of recombinations involving cycles is analogous. ⊓⊔

Given a recombination ρ, let ∆dcj(ρ) be respectively 0, +1 and +2 depending
whether ρ is optimal, neutral or counter-optimal. Any recombination applied to
a vertex of an AA-path and a vertex of a BB-path is optimal [3]. A recombina-
tion applied to vertices of two different AB-paths can be either neutral, when
the result is also a pair of AB-paths, or counter-optimal, when the result is a
pair composed of an AA-path and a BB-path. All other types of path recombi-
nations are neutral. In addition, all recombinations involving at least one cycle
are counter-optimal. We define ∆d(ρ) = ∆dcj(ρ) + ∆λ(ρ). Any counter-optimal
recombination has ∆d ≥ 0, thus only path recombinations can have ∆d ≤ −1.

Let A = Â+(B̂+Â+)∗ (respect. B = B̂+(Â+B̂+)∗) be a sequence with an odd

(≥ 1) number of runs, starting and ending with a run over Â (respect. over B̂).

We can then make any combination of A and B, such as AB = Â+(B̂+Â+)∗B̂+,

that is a sequence with an even (≥ 2) number of runs, starting with a run over Â

and ending with a run over B̂. An empty sequence (with no run) is represented
by ε. Then each one of the notations AAε, AAA, AAB, AAAB, BBε, BBA, BBB,
BBAB, ABε, ABA, ABB, ABAB and ABBA represents a particular type of path
(AA, BB or AB) with a particular structure of runs (ε, A, B, AB or BA).
The complete set of path recombinations with ∆d ≤ −1 is given in Table 1. In
Table 2 we also list recombinations with ∆d = 0 that create at least one source
of recombinations of Table 1. We denote by AB• an AB-path that can not be a
source of a recombination in Tables 1 and 2, such as ABε, ABA and ABB.

Table 2. Recombinations that have ∆d = 0 and create resultants that can be used in
recombinations with ∆d ≤ −1.

sources resultants ∆λ ∆dcj ∆d

AAA + ABBA AB• + AAAB −1 +1 0
AAB + ABAB AB• + AAAB −1 +1 0
BBA + ABAB AB• + BBAB −1 +1 0
BBB + ABBA AB• + BBAB −1 +1 0

sources resultants ∆λ ∆dcj ∆d

AAA + BBB AB• + ABAB 0 0 0
AAB + BBA AB• + ABBA 0 0 0

ABAB + ABAB AAA + BBB −2 +2 0
ABBA + ABBA AAB + BBA −2 +2 0

Proposition 8. The recombinations with ∆d = 0 involving cycles or circular

singletons cannot create new components that can be used as sources of recom-

binations listed in Tables 1 and 2.

Proof. A recombination ρ with ∆d = 0 involving a cycle or a circular singleton
C would integrate C to another component C′ without changing the type or the
structure of runs in C′. Thus, if C′ is a source of a recombination in these tables
after ρ, C′ was already the same type of source before ρ. And if C′ was not a
source before ρ, C′ cannot become a source after ρ. ⊓⊔

With Proposition 8 we already have an exact formula to did
DCJ for a particular

set of instances. Given a G-adjacency γℓ◦ of a genome A such that γ 6= ◦, then
γ is said to be a tail of a linear chromosome in A. Two genomes are co-tailed if
their sets of tails are equal (this includes two genomes composed only of circular
chromosomes).

Theorem 2. Given two co-tailed genomes A and B without duplications, we

have did
DCJ(A, B) = dDCJ(A, B) +

∑
C∈AG(A,B) λ(C).

Proof. The graph AG(A, B) for co-tailed genomes A and B can have only sin-
gletons (that could be AAA and BBB), cycles and AB-paths of one edge. These
AB-paths could be ABAB, but never ABBA, thus no recombination listed in
Tables 1 and 2 is possible. ⊓⊔

Now we continue the analysis for the general case. The two sources of a
recombination can also be called partners. Looking at Table 1 we observe that
all partners of ABAB and ABBA paths are also partners of AAAB and BBAB

paths, all partners of AAA and AAB paths are also partners of AAAB paths
and all partners of BBA and BBB paths are also partners of BBAB paths.
Moreover, some resultants of recombinations in Tables 1 and 2 can be used in
other recombinations. These observations allow the identification of groups, as
listed in Tables 3 and 4.

The deductions shown in Tables 3 and 4 can be computed with an approach
that greedily maximizes the number of recombinations in P , Q, T , S, M and N

in this order. The P part contains only one operation and is thus very simple.
The same happens with Q, since the two groups in this part are exclusive after
applying P . The only part that requires more attention is T , in which some
combinations of operations can happen at the same time and the order can be
relevant. The part S is only the application of all possible remaining operations

Table 3. All recombination groups obtained from Table 1. Observe that the last four
groups in T are subsets of groups in Q and the last ten groups in S are subsets of
groups in Q and T . The column scr indicates the contribution of each path in the
distance decrease (the table is sorted in descending order with respect to this column).

sources resultants ∆d scr

P AAAB + BBAB 2AB• −2 −1

Q 2AAAB + BBA + BBB 4AB• −3 −3/4
2BBAB + AAA + AAB 4AB• −3 −3/4

T AAAB + BBA + ABAB 3AB• −2 −2/3
AAAB + BBB + ABBA 3AB• −2 −2/3
BBAB + AAA + ABBA 3AB• −2 −2/3
BBAB + AAB + ABAB 3AB• −2 −2/3
2AAAB + BBA 2AB• + AAB −2 −2/3
2AAAB + BBB 2AB• + AAA −2 −2/3
2BBAB + AAA 2AB• + BBB −2 −2/3
2BBAB + AAB 2AB• + BBA −2 −2/3

sources resultants ∆d scr

S AAA + BBA 2AB• −1 −1/2
AAB + BBB 2AB• −1 −1/2
ABAB + ABBA 2AB• −1 −1/2
BBAB + AAA AB• + ABAB −1 −1/2
AAAB + BBA AB• + ABBA −1 −1/2
BBAB + AAB AB• + ABBA −1 −1/2
AAAB + BBB AB• + ABAB −1 −1/2
AAAB + ABAB AB• + AAA −1 −1/2
AAAB + ABBA AB• + AAB −1 −1/2
BBAB + ABAB AB• + BBB −1 −1/2
BBAB + ABBA AB• + BBA −1 −1/2
AAAB + AAAB AAB + AAA −1 −1/2
BBAB + BBAB BBB + BBA −1 −1/2

Table 4. All recombination groups that contain operations from Tables 1 and 2. The
groups in N are subsets of the groups in M . The table is sorted in descending order
with respect to the contribution of each path in the distance decrease (column scr).

sources resultants ∆d scr

M 2ABAB + AAB + BBA 4AB• −2 −1/2
2ABBA + AAA + BBB 4AB• −2 −1/2

N ABAB + AAB + BBA 3AB• −1 −1/3
ABBA + AAA + BBB 3AB• −1 −1/3

sources resultants ∆d scr

N 2ABAB + AAB 2AB• + AAA −1 −1/3
2ABAB + BBA 2AB• + BBB −1 −1/3
2ABBA + AAA 2AB• + AAB −1 −1/3
2ABBA + BBB 2AB• + BBA −1 −1/3

with ∆d = −1. After S, the two groups in M are exclusive and then the same
happens to the six groups in N .

The results presented in this section give rise to the following theorem, that
gives the exact formula for the DCJ-indel distance:

Theorem 3. Given two genomes A and B without duplications, we have

did
DCJ(A, B) = dDCJ(A, B) +

∑

C∈AG(A,B)

λ(C) − 2P − 3Q − 2T − S − 2M − N,

where P , Q, T , S, M and N are computed as described above.

Both AG(A, B) and dDCJ(A, B) can be computed in linear time [1]. The
runs can be obtained by a single walk through each component of AG(A, B),
which is also linear. The algorithm to compute P , Q, T , S, M and N is a finite
sequence of if and else statements, that depends only on the number of each
type of labeled path in AG(A, B), thus the whole procedure takes linear time.

6 Experiments and Discussion

We used our method to analyze the evolution of Rickettsia, a group of obligate in-
tracellular parasites that are carried by many vectors (frequently hematophagous

arthropods) and occasionally transmitted from the vector to mammalians (in-
cluding humans), causing several diseases (typhus, spotted fever, etc.) [2]. The
genomes of such intracellular parasites are observed to have a reductive evolu-
tion, that is, the process by which genomes shrink and undergo extreme levels
of gene degradation and loss. There are several completely sequenced Rickettsia

genomes, and most of them are closely related [2]. The exception is R. bellii,
which shows a high level of rearrangement with respect to the others. We com-
pared R. bellii with six other species of Rickettsia, observing in all pairwise
analyses a considerable reduction of the indels (see Table 5), when they are
grouped into runs (column ΣΛ) and into merged runs (column Σλ). Although
these are preliminary results, they could suggest that each cluster is composed
of genes that have been lost together during the evolution of Rickettsia.

Table 5. Comparing R. bellii (1.52 Mbp) with six other species of Rickettsia.

species Mbp |A| + |B| ΣΛ Σλ dDCJ did
DCJ

R. felis 1.55 333 241 181 312 493
R. massiliae 1.36 302 218 172 276 448
R. africanae 1.28 290 212 166 260 426

species Mbp |A| + |B| ΣΛ Σλ dDCJ did
DCJ

R. conorii 1.27 277 192 153 261 414
R. prowazekii 1.11 241 130 117 197 314
R. typhi 1.11 239 126 114 195 309

Discussion. We propose the first linear time algorithm to compute the distance
between two genomes with unequal content, but without duplications, taking
into consideration DCJ and indel operations. With this method we analyze a
group of bacteria, obtaining interesting results. Due to the lack of available
data, we could not yet perform analyses on linear genomes, which would let us
test the impact of path recombinations on the distance.

This work opens some perspectives. One is the development of a sorting
algorithm that can be derived from the results presented here. Another issue
that could be addressed next is the incorporation of replacements in the model,
when an insertion and a deletion occur at the same position of the genome.

References

1. Bergeron, A., Mixtacki, J. and Stoye, J.: A unifying view of genome rearrange-
ments. In Proc. of WABI, LNCS 4175, 163–173, 2006.

2. Blanc G. et al.: Reductive genome evolution from the mother of Rickettsia. PLoS

Genetics, 3(1): e14, 2007.
3. Braga M. D. V. and Stoye J.: The solution space of sorting by DCJ. To appear in

Journal of Computational Biology, 2010.
4. Yancopoulos, S. and Friedberg, R.: Sorting Genomes with Insertions, Deletions and

Duplications by DCJ. In Proc. of RECOMB-CG, LNBI 5267, 170–183, 2008.
5. Yancopoulos, S., Attie, O. and Friedberg, R.: Efficient sorting of genomic per-

mutations by translocation, inversion and block interchange. Bioinformatics 21,
3340–3346, 2005.

