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Abstract. High throughput sequencing technologies have become fast
and cheap in the past years. As a result, large-scale projects started to
sequence tens to several thousands of genomes per species, producing
a high number of sequences sampled from each genome. Such a highly
redundant collection of very similar sequences is called a pan-genome. It
can be transformed into a set of sequences “colored” by the genomes to
which they belong. A colored de-Bruijn graph (C-DBG) extracts from
the sequences all colored k-mers, strings of length k, and stores them in
vertices. In this paper, we present an alignment-free, reference-free and
incremental data structure for storing a pan-genome as a C-DBG: the
Bloom Filter Trie. The data structure allows to store and compress a set
of colored k-mers, and also to efficiently traverse the graph. Experimental
results prove better performance compared to another state-of-the-art
data structure.

1 Introduction

A string x is a sequence of characters drawn from a finite, non-empty set, called
the alphabet A. Its length is denoted by |x|. The character at position i is denoted
by x[i], the substring starting at position i and ending at position j by x[i..j].
Strings are concatenated by juxtaposition. If x = ps for (potentially empty)
strings p and s, then p is a prefix and s is a suffix of x.

A genome is the collection of all inheritable material of a cell. Ideally it
can be represented as a single string over the DNA alphabet A = {a, c, g , t}
(or as a few strings in case of species with multiple chromosomes). In practice,
however, genomes in databases are often less perfect, either left unchanged in
form of the raw data as produced by sequencing machines (millions of short
sequences called reads), or after some incomplete assembly procedure in form of
contiguous chromosome regions (hundreds of contigs of various lengths). We are
interested in the problem of storing and compressing a set of multiple highly sim-
ilar genomes, e.g. the pan-genome of a bacterial species, comprising hundreds, or
even thousands of strains that share large sequence parts, but differ by individ-
ual mutations from one another. An abstract structure that has been proposed
for this task is the colored de-Buijn graph (C-DBG) [13]. It is a directed graph
G = (VG, EG) in which each vertex v ∈ VG represents a k-mer, a string of



length k over A, associated with a set of colors representing the genomes in
which the k-mer occurs. A directed edge e ∈ EG from vertex v to vertex v′,
respectively from k-mer x to k-mer x′, exists if x[2..k] = x′[1..k−1]. Each k-mer
x has |A| possible successors x[2..k]c and |A| possible predecessors cx[1..k − 1]
with c ∈ A. An implementation of such a graph does not have to store edges
since they are implicitly given by vertices overlapping on k − 1 characters.

In this paper, we propose a new data structure for indexing and compressing
a pan-genome as a C-DBG, the Bloom Filter Trie (BFT). It allows any format
for the input genomes (completely sequenced, set of contigs, set of reads, and
even mixtures of them), is alignment-free, reference-free and incremental, i.e.,
it does not need to be entirely rebuilt when a new genome is inserted. BFTs
provide insertion and look-up operations for strings of fixed length associated
with an annotation.

In the next section, existing data structures and software for pan-genome
representation are reviewed. Section 3 presents the BFT and Section 4 the oper-
ations it supports. Then, Section 5 describes the traversal of a C-DBG stored as
a BFT. Finally, Section 6 contains experimental results showing the performance
of the data structure. Section 7 concludes. Our implementation of the BFT is
available at https://github.com/GuillaumeHolley/BloomFilterTrie.

2 Existing approaches

The BFT, as well as existing tools for pan-genome storage, uses a variety of basic
data structures reviewed in the following. Existing tools for pan-genome storage
will then be discussed in Section 2.2.

2.1 Data structures

One common way to index and compress a set of strings is to use as a first step the
Burrows-Wheeler Transform (BWT) [2] that rearranges the input data to enable
better compression by aggregating characters with similar context. For multiple
sets of strings, a disk-based approach [4] or different terminator characters must
be used. The FM-Index [9] allows to count and locate the occurrences of a
substring in the BWT.

Introduced by Bloom [1], a Bloom filter (BF) records the presence of elements
in a set. Based on the hash table principle, look-up and insertion times are
constant. The BF is composed of a bit array B[1..m], initialized with 0s, in
which the presence of n elements is recorded. A set of f hash functions h1, ..., hf

is used, such that for an element e, hi(e) : e → {1, ..,m}. Inserting an element
into B and testing for its presence are then

Insert(e,B) : B[hi(e)]← 1 for all i = 1, ..., f

and

MayContain(e,B) :

f∧
i=1

B[hi(e)],



respectively, where
∧

is the logical conjunction operator. The BF does not gen-
erate false negatives but may generate false positives, as MayContain can report
the presence of elements which are not present but a result of independent in-
sertions.

The Sequence Bloom Tree (SBT) [21] is a binary tree with BFs as vertices.
An internal vertex is the union of its two children BFs, i.e., a BF where a cell is
set to 1 if the cell at the same position in at least one of the two children is set
to 1.

A trie [10] is a rooted edge-labeled tree T = (VT , ET ) storing a set of strings.
Each edge e ∈ ET is labeled with a character. A path from the root to a leaf
represents the string obtained by concatenating all the characters on this path.
The depth of a vertex v in T is denoted by depth(v, T ) and is the number of
edges between the root of T and v. The height of T , denoted by height(T ), is
the number of edges on the longest path from the root of T to a leaf. The burst
trie [11] is an efficient implementation of a trie which reduces its number of
branches by compressing sub-tries into leaves. Its internal vertices are labeled
with multiple prefixes of length 1, linked to children. The leaves are labeled with
multiple suffixes of arbitrary length. A leaf has a limited capacity of suffixes
and is burst when this capacity is exceeded. A burst splits suffixes of a leaf into
prefixes of length 1, linked to new leaves representing the remaining suffixes.

2.2 Software for pan-genome storage

Existing tools for pan-genome storage are mostly alignment-based or reference-
based and take a set of assembled genomes as input. Alignments naturally exhibit
shared and unique regions of the pan-genome but are computationally expen-
sive to obtain. In addition, misalignments can lead to an inaccurate estimation of
the pan-genome regions [7]. PanCake [8] is an extension of string graphs, known
from genome assembly [17], which achieves compression based on pairwise align-
ments. Experiments showed compression ratios of 3:1 to 5:1. Nguyen et al. [18]
formulated the pan-genome construction problem as an optimization problem of
arranging alignment blocks for a set of genomes partitioned by homology. The
complexity of the problem has been shown to be NP-hard, and a heuristic using
Cactus graphs [19] was provided. A multiple sequence alignment is required for
creating the blocks, another NP-hard problem.

Among the reference-based tools, Huang et al. [12] proposed to build a pan-
genome by adding all the variants detected between a set of genomes to a refer-
ence genome. The BWT of the augmented reference is then computed and can
be used by an aligner based on the FM-Index. While being more accurate with
the augmented reference genome than BWA [14] with the reference alone, the
aligner is between 10 to 100 times slower, uses significantly more memory and
can introduce false positive alignments. RCSI [22] (Referentially Compressed
Search Index) uses referential compression with a compressed suffix tree to store
a pan-genome and to search for exact or inexact matches. The inexact match-
ing allows a limited number of edit distance operations. 1,092 human genomes
totaling 3.09 TB of data were compressed into an index of 115 GB, offering a



compression ratio of about 28:1. Yet, the index is built for a maximum length
query and a maximum number of edit operations.

Close to our approach is SplitMEM [16], which uses a C-DBG to build a pan-
genome made of assembled genomes and to extract the shared regions. Although
the C-DBG is directly constructed in a compressed way, where a non-branching
path is stored in a single vertex, the resulting size of the data structure is larger
than the sum of the original sizes of the input sequences, due to the use of an
augmented suffix tree.

Recently, the authors of Khmer [5] introduced in their software library a de-
Bruijn graph labeling method. Khmer provides a lightweight representation of
de-Bruijn graphs [20] based on Bloom filters and a graph labeling method based
on graph partitioning. Unfortunately, this functionality was made available only
a few days before submission.

The SBT [21] is an alignment-free, reference-free and incremental data struc-
ture that allows to label sequences with their colors. The proposed tool is de-
signed to index and compress data from sequencing experiments for effective
query of full-lenth genes or transcripts by separation into k-mers. A leaf of an
SBT is used to represent a sequencing experiment by extracting all its k-mers
and storing them in the BF of the leaf. SBTs do not represent exactly the set of
k-mers of the sequencing experiments they contain, though, due to the inexact
nature of BFs.

3 The Bloom Filter Trie

The Bloom Filter Trie (BFT) that we propose in this paper is an implementation
of a C-DBG. It is based on a burst trie and is used to store k-mers associated
with a set of colors. For the moment we may assume that colors are represented
by a bit array color initialized with 0s. Each color has an index icolor such that
colorx[icolor ] = 1 records that k-mer x has color icolor . Sets of colors will later
be compressed as explained in Section 4.3. All arrays in a BFT are dynamic: An
insertion at position pos in an array reallocates it and shifts every cell having
an index ≥ pos by one position.

In the following, let t = (Vt, Et) be a BFT created for a certain value of k
where we assume that k is a multiple of an integer l such that k-mers can be split
into k

l equal-length substrings. The maximum height of t is heightmax (t) =
k
l −1.

The alphabet we consider is the DNA alphabet A = {a, c, g, t}, and because
|A| = 4, each character can be stored using two bits. A vertex in a BFT is
a list of containers, zero or more of which are compressed, plus zero or one
uncompressed container. In the following, we will explain how the containers are
represented and how an uncompressed container is burst when its capacity is
exceeded.

3.1 Uncompressed container

An uncompressed container of a vertex v in a BFT is a limited capacity set of
tuples <s, colorps> where s is a suffix and p is the prefix represented by the



path from the root to v. Uncompressed containers are burst when the number
of suffixes stored exceeds their capacity c > 0. Then, each suffix s of the uncom-
pressed container is split into a prefix spref of length l and a suffix ssuf of length
|s|− l such that s = spref ssuf . Prefixes are stored in a new compressed container.
Suffixes, attached with their colors, are stored in new uncompressed containers,
themselves stored in the children of the compressed container. An example of a
BFT and a bursting is given in Figure 1.

Fig. 1. Insertion of six suffixes (that are here complete k-mers) with different colors
(boxes with diagonal lines) into a BFT with k = 12, l = 4 and c = 5. In (a), the first
five suffixes are inserted at the root into an uncompressed container. When a sixth
suffix gcgccaggaatc is inserted, the uncompressed container exceeds its capacity and is
burst, resulting in the BFT structure shown in (b).

3.2 Compressed container

A bursting replaces an uncompressed container by a compressed one, used to:

– store q suffix prefixes in compressed form (in Figure 1(b), q = 4),
– store links to children containing the suffixes,
– reconstruct suffix prefixes and find the corresponding children.

In the following, each suffix prefix spref is split into a prefix a and a suffix b with
respective binary representations α and β. A compressed container is composed
of four structures quer , pref , suf and clust , where:

– quer is a BF represented as a bit array of length m and f hash functions,
used to record and filter for the presence of q suffix prefixes;

– pref is a bit array of 2|α| bits initialized with 0s and used to record prefix
presence exactly. Here the binary representation α of a prefix a is interpreted
as an integer such that pref [α] set to 1 records the presence of a;

– suf is an array of q suffixes b sorted in ascending lexicographic order of the
original suffix prefixes they belong to;

– clust is an array of q bits, one per suffix of array suf , that represents cluster
starting points. A cluster is a list of consecutive suffixes in array suf that
share the same prefix. It has an index icluster with 1 ≤ icluster ≤ 2|α| and



a start position poscluster in the array suf with icluster ≤ poscluster ≤ q.
Position pos in array clust is set to 1 to indicate that the suffix in suf [pos]
starts a cluster because it is the lexicographically smallest suffix of its cluster.
A cluster contains n ≥ 1 suffixes and, therefore, position i in array clust is
set to 0 for pos < i < pos + n. The end of a cluster is indicated by the
beginning of the next cluster or if pos ≥ q.

For example, the internal representation of the compressed container shown in
Figure 1(b) with |a| = 2 and |b| = 2 would be:

quer 0 0 1 0 1 1 0 0 0 1 1 1 suf gc ca cc gc

pref 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 clust 1 1 1 0

The size required by a set of q substrings in a compressed container is m +
2|α|+ q · (|β|+1) bits. A bursting minimizes this size by choosing a prefix length
|a| and a BF size m such that the set of substrings stored in a compressed
container does not occupy more memory than their original representation in an
uncompressed container, i.e., m+ 2|α| ≤ q · (|α| − 1). Each suffix prefix inserted
after a bursting costs only |β| + 1 bits. When the average size per suffix prefix
stored is close to |β| + 1 bits, arrays pref , suf and clust can be recomputed by
increasing |a| and decreasing |b|, such that 2|α

′| + q · |β′| < 2|α| + q · |β|, where
α′ and β′ are the values of α and β, respectively, after resizing.

4 Operations supported by the Bloom Filter Trie

The BFT supports all operations necessary for storing, traversing and searching
a pan-genome, as well as to extract the relevant information of the contained
genomes and subsets thereof. Here we describe the most basic ones of them, Look-
up (Section 4.1) and Insertion (Section 4.2), as well as how the sets of colors are
compressed (Section 4.3). Traversal of the graph is discussed in Section 5.

The algorithms use two auxiliary functions. HammingWeight(α, pref ) counts
the number of 1s in pref [1..α] and corresponds to how many prefixes represented
in array pref are lexicographically smaller than or equal to an inserted prefix a
with binary representation α. This requires O(2|α|) time. The second function,
Rank(i, clust), iterates over array clust from its first position until the i-th entry 1
is found and returns the position of this entry. It corresponds to the start position
of cluster i in array clust . If the entry is not found, the function returns |clust |+1
as a position. While Rank could be implemented in O(1) time [9], we use a more
naive but space efficient O(q) time implementation.

4.1 Look-up

The function that tests whether a suffix prefix spref = ab with binary represen-
tation αβ is stored in a compressed container cc is given in Algorithm 1. Line 1
uses MayContain to filter for presence of spref inside cc by querying the BF quer



in O(f) time. If present as a true or false positive, the presence of the prefix a
is verified in the array pref in O(1) time. If a is not present, this was clearly a
false positive and nothing else has to be done. If a is present, line 2 computes in
O(2|α|) time the Hamming weight i of a, i.e., the index of the cluster in which
suffix b is possibly situated. Line 3 locates the rank of i, i.e., the start position of
the cluster, and lines 4–7 compare the suffixes of the cluster to b. Lines 3–7 are
computed in O(q) time. Algorithm 1 has therefore a worst case running time of
O(f + 2|α| + q).

Algorithm 1 Contains(ab, cc)

1: if MayContain(ab, cc.quer) and cc.pref [α] = 1 then
2: i← HammingWeight(α, cc.pref )
3: start ← Rank(i, cc.clust)
4: pos ← start
5: while pos ≤ |suf | and (pos = start or cc.clust [pos] = 0) do
6: if cc.suf [pos] = b then return true

7: pos ← pos + 1

8: return false

The function that tests whether a k-mer x is present in a BFT t = (Vt, Et)
is given in Algorithm 2. Each vertex v ∈ Vt represents k-mer suffixes possibly
stored in its uncompressed container or rooted from its compressed containers.
The look-up traverses t and, for a vertex v, queries its containers one after
the other for suffix xsuf = x[l · depth(v, t) + 1..k]. If the queried container is
a compressed container, its BF quer is queried for xsuf [1..l] and, in case of
a positive answer, the function Contains is used for an exact membership of
xsuf [1..l]. If it is found, the traversing procedure continues recursively on the
corresponding child. The absence of xsuf [1..l] indicates the absence of x in t since
xsuf [1..l] cannot be in another container of v. If the container is an uncompressed
container, its suffixes are compared to xsuf . As an uncompressed container has
no children, a match indicates the presence of the k-mer. Algorithm 2 is initially
called as TreeContains(x, 1, l, root). In the worst case, all vertices on a traversed
path represent all possible suffix prefixes and the BFs quer have a false positive

ratio of 0. In such case, each traversed vertex contains ⌈ |A|l
c ⌉ containers. The

longest path of a BFT has heightmax (t) + 1 vertices. Therefore, the worst case

time of TreeContains is O(heightmax (t) · ⌈
|A|l
c ⌉ · (f + 2|α| + q)).

4.2 Insertion

Prior to any k-mer insertion into a BFT t, a look-up verifies if the k-mer is
already present. If it is, only its set of colors is modified. Otherwise, the look-up
stops the trie traversal on a container cont of a vertex v where the searched suffix
prefix or k-mer suffix is not present. If cont is an uncompressed container, the



Algorithm 2 TreeContains(x, i, l, v)

1: for each container cont in v do
2: if cont is compressed and MayContain(x[i..i+ l − 1], cont .quer) then
3: if Contains(x[i..i+ l − 1], cont) then
4: v ← child associated with x[i..i+ l − 1] in cont .suf
5: return TreeContains(x, i+ l, l, v)
6: else return false

7: else if cont is uncompressed then
8: for each <s, colorx[1..i−1]s> in cont do
9: if s = x[i..k] then return true

10: return false

insertion of the k-mer suffix and its color is a simple O(c) time process. If cont
is compressed, the insertion of suffix prefix spref = ab is a bit more intricate.
In fact, it will only be triggered if cont is the first compressed container of
v to have spref as a false positive (MayContain(spref , cont .quer) = true and
Contains(spref , cont) = false). False positives are therefore “recycled”, which is
a nice property of BFTs: The BF quer remains unchanged, and only pref , suf
and clust need to be updated in a way similar to Algorithm 1: The presence
of prefix a must be first verified by testing the value of pref [α] where α is the
binary representation of a. If pref [α] = 0, prefix a is not present and is recorded
by setting pref [α] to 1. Then, the index idcluster and start position poscluster of
the new cluster are computed using HammingWeight and Rank. The suffix b is
inserted into suf [poscluster ] and a 1 into clust [poscluster ]. This takes O(2|α|+2q)
time. If pref [α] = 1 prior to insertion, prefix a is already present, and idcluster

and poscluster have already been computed by Contains(spref , cont). Let n be the
number of suffixes in cluster idcluster . Suffix b is inserted into suf [pos] such that
poscluster ≤ pos ≤ poscluster + n and suf [pos − 1] < suf [pos]. If pos = poscluster ,
b starts its cluster: A 1 is inserted into clust [pos] and clust [pos + 1] is set to 0.
Otherwise, a 0 is inserted into clust [pos]. This takes O(2q) time. The worst case
time insertion of a k-mer is O(d + 2|α| + 2q) with d being the worst case time
look-up.

The internal representation of the compressed container shown in Figure 1(b)
after insertion of the suffix prefix gtat is given below (inserted parts are high-
lighted). The presence of prefix gt is recorded in pref [12]. Then, its cluster index
and start position are computed as 4 and 5, respectively. Consequently, after
reallocation of arrays suf and clust , suffix at is inserted in suf [5] and clust [5] is
set to 1 to indicate that suf [5] starts a new cluster.

quer 0 0 1 0 1 1 0 0 0 1 1 1 suf gc ca cc gc at

pref 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 clust 1 1 1 0 1



4.3 Color compression

Remember from Section 3 that color sets associated with k-mers in a C-DBG are
initially stored as bit arrays in BFTs. However, these can be compressed. To this
end, a list of all color sets occurring in the BFT is built and sorted in decreasing
order of total size, i.e., the number of k-mers sharing a color set multiplied by
its size. Then, by iterating over the list, each color set is added incrementally to
an external array if the integer encoding its position in the array uses less space
than the size of the color set itself. Finally, each color set present in the external
array is replaced in the BFT by its position in the external array.

5 Traversing successors and predecessors

Let t be a BFT that represents a C-DBG G. For a k-mer x, visiting all its
predecessors or successors in G, denoted pred(x,G) and succ(x,G), respectively,
implies the look-up of |A| different k-mers in t. Such a look-up would visit in
the worst case |A| · (heightmax (t) + 1) vertices in t. This section describes how
to reduce the number of vertices and containers visited in t during the traversal
of a vertex in G.

Observation 1. Let G be a C-DBG represented by a BFT t and x a k-mer cor-
responding to a vertex of G. All k-mers of succ(x,G) share x[2..k] as a common
prefix and therefore share a common subpath in t starting at the root. On the
other hand, k-mers of pred(x,G) have different first characters and, therefore,
except for the root of t do not share a common subpath. Hence, the maximum
number of visited vertices in t for all k-mers of succ(x,G) is 1 + heightmax (t)
and for all k-mers of pred(x,G) is 1 + |A| · heightmax (t).

Lemma 1. Let G be a C-DBG represented by a BFT t, x a k-mer in t and v
a vertex of t that terminates the shared subpath of the k-mers in succ(x,G). If
depth(v, t) = heightmax (t), succ(x, t) suffixes may be stored in any container of
v. If not, they are stored in the uncompressed container of v.

Proof. A vertex v is the root of a sub-trie storing k-mer suffixes of length
l · (heightmax (t)− depth(v, t) + 1) with l = k

heightmax (t)+1 . Let s be a k-mer suffix

of succ(x, t) rooted at a vertex v ∈ Vt. If depth(v, t) ̸= heightmax (t) but s is
rooted at a compressed container in v, then this compressed container stores
s[1..l], and s[l+1..|s|] is rooted in one of its children. As the divergent character
between the k-mer suffixes of succ(x) is in position |s| − 1, this character is in
s[l + 1..|s|], rooted at one child of this compressed container. Therefore v does
not terminate the common subpath shared by succ(x, t) k-mers. ⊓⊔

Lemma 1 proves that the only two cases where a look-up of pred(x,G) or
succ(x,G) must search in different containers of a vertex are:

– searching at the root of t for k-mers of pred(x,G),
– if depth(v, t) = heightmax (t), searching at vertex v for suffixes of succ(x,G).



Restricting the hash functions used in the compressed containers to take only
positions 2 through l − 1 into account, allows to limit the search space.

Lemma 2. Let t be a BFT where the f hash functions hi of quer have the form
hi(spref ) : spref [2..l − 1] → {1, ..,m} for i = 1, ..., f . Then, for a vertex v of
t and a suffix prefix spref , all possible substrings s′pref = c1spref [2..l − 1]c2 are
contained in the same container of v.

Proof. Assume a k-mer suffix s inserted in a vertex v of t. A look-up for s
analyzes the containers of v from the head to the tail of the container list. In the
worst case, s can be rooted, according to BFs quer , in all compressed containers
as a true positive or as a false positive. However, a look-up stops either on the
first compressed container claiming to contain the suffix prefix spref = s[1..l],
or on the uncompressed container. As the hash functions of quer consider only
spref [2..l−1], a look-up will therefore stop on the same container for any substring
s′pref = c1spref [2..l − 1]c2. ⊓⊔

As a consequence of Lemma 2, each suffix prefix spref stored or to store
in arrays pref , suf and clust is modified such that spref = spref [2..l]spref [1],
which guarantees that all s′pref = spref [2..l − 1]c2c1 are in the same container.
Furthermore, suffixes stored in array suf are required to have a minimum length
of two characters to ensure that characters c1 and c2, the variable parts between
the different s′pref , are stored in array suf . Hence, as all s′pref share spref [2..l−1]
as a prefix, they share the same cluster in arrays suf and clust . Suffix prefixes
s′pref = spref [1..l − 1]c2 also have consecutive suffixes in their cluster.

6 Evaluation

We implemented the BFT in C and compared it to the SBT [21], version 0.3.1,
on a mid-class laptop with an SSD hard drive and an Intel Core i5-4300M pro-
cessor cadenced at 2.6GHz. All software was run with a single thread. Both data
structures were used to represent one real and one simulated pan-genome dataset.
The real dataset (NCBI BioProject PRJEB5438) consists of raw sequencing data
from 473 clinical isolates of Pseudomonas aeruginosa, sampled from 34 patients,
resulting in 844.37GB of FASTQ files. The simulated dataset was generated
from 19 strains of Yersinia pestis. For each strain, we used Wgsim 1 to create
6,000,000 reads of length 100 with a substitution sequencing error rate of 0.5%,
resulting in 31GB of FASTQ files. We first used KmerGenie [3] on a subsample
of the files for each dataset to estimate the best k-mer length and the minimum
number of occurrences for considering a k-mer valid (not resulting from a se-
quencing error). A length of k = 63 with a minimum number of 3 occurrences
was selected for the real and a length of k = 54 with a minimum of 15 occurrences
for the simulated data set.

For the BFT, we used KMC2 [6] to extract all valid k-mers from each genome.
The capacity c influences the compression ratio as well as the time for insertion

1 https://github.com/lh3/wgsim



and look-up. We chose a value of c = 248 as it showed a good tradeoff in practice.
The prefix length l determines the size of several internal structures of the BFT
and how efficiently they can be stored. We selected l = 9 as this limits the
internal fragmentation of the memory. The color set compression was applied
regularly during the insertion process in order to keep the memory used to build
the BFT as low as possible. After insertion of each dataset, the BFT was written
to disk.

The SBT employs Jellyfish [15] to extract from each genome all valid k-mers.
As the size of BFs used in the SBTs must be specified prior to the k-mer counting
and should be the same for all vertices, the authors of the SBT suggested to
estimate the number of unique k-mers in each dataset to design the size of BFs,
at the price of an extra computation time (personal communication). Since we
knew the exact number of unique k-mers from the BFT construction, we used
this instead: 93,202,452 k-mers for the real dataset, resulting in a BF size of
11.1MB. However, our simulated dataset corresponds to a very well conserved
species with an average of 4,557,245 unique 54-mers per genome for a total of
5,121,443 unique 54-mers in the pan-genome: Each BF of the SBT would hold
a very high false positive ratio, 59% on average, by choosing 5,121,443 bits for
the BFs size. To avoid saturation, we computed a BF size of 24,910,142 bits
(2.97MB) for the simulated dataset to obtain a smaller false positive ratio of
approximately 7.2% – similar to the ratio for the real dataset. We also reused
k-mer counts computed for the BFT to estimate the number of hash functions:
One hash function for the real dataset and four hash functions for the simulated
dataset. The SBT counts the k-mers and builds the leaves in a one step process:
It is not possible to differentiate these two sub-steps nor to extract the valid k-
mers using a different software. According to the SBT paper and the CPU usage
of this step, the insertion time is mainly dominated by the k-mer extraction.
Note that SBTs are streamed on disk, each vertex being kept in a separate file.
Running time and memory usage are shown in Table 1.

Table 1. Running time and memory usage for the real (P. aeruginosa) and simulated
(Y. pestis) dataset. The compression ratio is given w.r.t. the original file sizes and (NA)
indicates unavailable information.

P. aeruginosa Y. pestis

BFT SBT BFT SBT

Insertion time 14 h 34min 44 h 4min 11min 29 s 38min 6 s

(without k-mer counting) (8 h 5min) (NA) (2min 18 s) (NA)

Uncompressed size 7.25GB 11GB 79MB 115.2MB

(compression ratio) (116:1) (77:1) (402:1) (276:1)

Compressed size 2.2GB 4.8GB 76MB 117.2MB

(compression ratio) (384:1) (176:1) (418:1) (271:1)



Suprisingly, the compressed version of the SBT for the simulated dataset
takes more disk space than the uncompressed version. Memory usage during
the insertion of the real dataset in the BFT is shown in Figure 2. Note that
after storage on disk, the BFT can be compressed using a standard compressor.
We compressed the BFT using 7z 2, resulting in a file of 980MB for the real
dataset and 40.1MB for the simulated dataset (about 882:1 and 792:1 w.r.t. the
original file sizes). We suspect that 7z delivers such compression ratio by taking
advantage of the data redundancy among the uncompressed containers.

Fig. 2. Memory used by the BFT during the insertion of P. aeruginosa isolates.

For each dataset, the set of unique k-mers in the BFT was written to disk in
random order and reused as a batch query for the presence of all unique k-mers
in both data structures. It was not possible to query the SBT for a single batch
query of all 93,202,452 63-mers for the real dataset as the memory used exceeded
the 16GB of memory available on the test machine, even when specifying that
BFs could be loaded into memory separately. We suspect this is because k-mers
are first loaded into memory before querying and the results are also stored in
memory before writing to disk. Therefore, we divided the set of unique 63-mers
into ten subsets, the first nine subsets containing 10,000,000 k-mers each and
the last subset containing 3,202,452 k-mers. Query times are shown in Table 2.

2 http://www.7-zip.org/



Table 2. Query time for the real (P. aeruginosa) and simulated (Y. pestis) dataset
in total (and per k-mer). Real and simulated dataset batch queries contain 93,202,452
63-mers and 5,121,443 54-mers, respectively.

P. aeruginosa Y. pestis

BFT 13min (8.04 µs) 8 s (1.56 µs)

SBT 9h 18min (359µs) 3min 47 s (44.35µs)

A second experiment gives an estimation of the time required to traverse the
graph represented by a BFT: It verifies for each k-mer whether its corresponding
vertex in the graph is branching. This experiment first computes information
about the root in a negligible amount of time and memory. Then, the BFT is
queried for its branching vertices. For the real dataset, this experiment took
14min (average time of 8.71µs per 63-mer), resulting in 14,314,840 branching
vertices. For the simulated dataset, this experiment took 14 s (average time of
2.73µs per 54-mer), resulting in 6,312 branching vertices.

In summary, in our experiments the BFT was multiple times faster than the
SBT on the building time while using about 1.5 times less memory. The BFT
was about 30 times faster than the SBT for querying a k-mer.

7 Conclusion

We proposed a novel data structure called the Bloom Filter Trie for storing
a pan-genome as a colored de-Bruijn graph. The trie stores k-mers and their
colors. A new representation of vertices is proposed to compress and index shared
substrings. It uses four basic data structures, which allow to quickly verify the
presence of substrings. In the worst case, the compressed strings have a memory
footprint close to their binary representation. However, we observe in practice
substantial memory savings. Future work concerns the possiblity to compress
non-branching paths that share the same colors [16], but also the extraction of
the different pan-genome regions.
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15. G. Marçais and C. Kingsford. A fast, lock-free approach for efficient parallel count-
ing of occurrences of k-mers. Bioinformatics, 27(6):764–770, 2011.

16. S. Marcus, H. Lee, and M. C. Schatz. SplitMEM: a graphical algorithm for pan-
genome analysis with suffix skips. Bioinformatics, 30(24):3476–3483, 2014.

17. E. W. Myers. The fragment assembly string graph. Bioinformatics, 21:ii79–ii85,
2005.

18. N. Nguyen, G. Hickey, D. R. Zerbino, B. Raney, D. Earl, J. Armstrong, D. Haussler,
and B. Paten. Building a pangenome reference for a population. J. Comput. Biol.,
22(5):387–401, 2015.

19. B. Paten, M. Diekhans, D. Earl, J. St. John, J. Ma, B. Suh, and D. Haussler.
Cactus graphs for genome comparisons. J. Comput. Biol., 18(3):469–481, 2011.

20. J. Pell, A. Hintze, R. Canino-Koning, A. Howe, J. M. Tiedje, and C. T. Brown.
Scaling metagenome sequence assembly with probabilistic de bruijn graphs. Proc.
Natl. Acad. Sci. U.S.A., 109(33):13272–13277, 2012.

21. B. Solomon and C. Kingsford. Large-Scale Search of Transcriptomic Read Sets
with Sequence Bloom Trees. bioRxiv, 017087, 2015.

22. S. Wandelt, J. Starlinger, M. Bux, and U. Leser. RCSI: Scalable similarity search
in thousand(s) of genomes. Proc. of the VLDB Endowment, 6(13):1534–1545, 2013.


