
A Linear Time Approximation Algorithm for the DCJ
Distance for Genomes with Bounded Number of Duplicates

Diego P. Rubert1, Pedro Feijão2, Maŕılia D. V. Braga2,
Jens Stoye2, and Fábio V. Martinez1,?

1 Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil,
(diego,fhvm)@facom.ufms.br,

2 Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld,
Germany, (pfeijao,mbraga,stoye)@cebitec.uni-bielefeld.de

Abstract. Rearrangements are large-scale mutations in genomes, responsible for complex
changes and structural variations. Most rearrangements that modify the organization of a
genome can be represented by the double cut and join (DCJ) operation. Given two genomes
with the same content, so that we have exactly the same number of copies of each gene in each
genome, we are interested in the problem of computing the rearrangement distance between
them, i.e., finding the minimum number of DCJ operations that transform one genome into
the other. We propose a linear time approximation algorithm with approximation factor O(k)
for the DCJ distance problem, where k is the maximum number of duplicates of any gene in
the input genomes. Our algorithm uses as an intermediate step an O(k)-approximation for
the minimum common string partition problem, which is closely related to the DCJ distance
problem. Experiments on simulated data sets show that the algorithm is very competitive
both in efficiency and quality of the solutions.

1 Introduction

Large-scale mutations or rearrangements can produce complex changes and structural vari-
ations in genomes. They include inversions of chromosome segments, translocations of
chromosome ends, fusions and fissions of chromosomes. All these rearrangements can be
represented by the double cut and join (DCJ) operation [15], which basically consists of
cutting a genome in two distinct positions (possibly in two distinct chromosomes) and
joining the four resultant open ends in a different way.

A basic task in comparative genomics is to find the rearrangement distance between two
given genomes, i.e., the minimum number of rearrangements that transform one genome
into the other. For genomes without duplicate genes, there are linear time algorithms to
compute the distance allowing only DCJ operations [4]. On the other hand, for genomes
with duplicate genes, computing the rearrangement distance is NP-hard, even when the
genomes have the same content and only DCJ operations are allowed [2, 3].

In this paper we study the problem of computing the DCJ distance between two
genomes with the same content and possibly duplicate genes, with the restriction that we

? Corresponding author.

have exactly the same number of copies of each gene in each genome. We propose a linear
time approximation algorithm with approximation factor O(k), where k is the maximum
number of duplicates of any gene in the input genomes. The main goal is a construction of
a consistent decomposition of the corresponding adjacency graph, which is a disjoint cycle
decomposition of this graph. And then, we can easily compute the DCJ distance from this
decomposition.

To obtain such a decomposition we use a linear time approximation algorithm for the
minimum common string partition problem with approximation factor O(k) [11]. It is an
efficient approximation for the breakpoint distance (the number of genes in the genome mi-
nus the number of preserved adjacencies), an intermediate step of our proposed algorithm.
As we will show, the whole procedure is an approximation algorithm with approximation
factor O(k) and linear running time for the DCJ distance problem for genomes with the
same content and exactly the same number of copies of each gene in each genome. The
proposed algorithm works properly on inputs that are linear unichromosomal genomes.

The next section presents a background for describing the DCJ distance problem and
Section 3 presents it formally. The subsequent section discusses the algorithm for the min-
imum common string partition problem and correlates it to the DCJ distance. In Section 5
we develop our approach to compute the DCJ distance. Experiments on simulated data
sets are presented in Section 6. The last section concludes the paper.

2 Preliminaries

A gene g in a genome is an oriented DNA fragment that can be represented by the symbol g
itself, if it has direct orientation, or by the symbol −g, if it has reverse orientation. Genomes
can be partitioned into chromosomes, that are linear or circular sequences of genes. Each
one of the two ends of a linear chromosome is a telomere, represented by the symbol ◦.

Each chromosome in a genome can be represented by a string of its genes that can
be circular, if the chromosome is circular, or linear and flanked by the symbols ◦, if the
chromosome is linear. Given a gene g, let mA(g) be the number of occurrences of g in a
genome A. To refer to each occurrence of a gene g unambiguously, we number the occur-
rences of g from 1 to mA(g). When there exists at least one gene that occurs more than
once in genome A, we say that A has duplicate genes. Consider for instance the genome
A = {(◦ c1 −a1 d1 ◦), (◦ b1 −a2 c2 ◦)}, composed of two linear chromosomes (each chro-
mosome is flanked by parentheses). In A we have one occurrence of genes b and d and two
occurrences of genes a and c, that is, A has duplicate genes.

We use the notations G(A) and GN (A), respectively, to refer to the set of (non-numbered)
genes and to the set of numbered genes of a genome A. Considering again the genome A
above, we have G(A) = {a, b, c, d} and GN (A) = {a1, a2, b1, c1, c2, d1}. Observe that the
genomes A′ = {(◦ c1 −a2 d1 ◦), (◦ b1 −a1 c2 ◦)} and A′′ = {(◦ c2 −a2 d1 ◦), (◦ b1 −a1c1 ◦)}
are equivalent to A = {(◦ c1 −a1 d1 ◦), (◦ b1 −a2 c2 ◦)}. Given a genome A, possibly with

duplicate genes, we denote by [A] the equivalence class of genomes that can be obtained
from A by swapping indices between occurrences of the same gene.

2.1 Balanced Genomes

Given genomes A and B possibly with duplicate genes, if they contain the same number
of occurrences of each gene, i.e. GN (A) = GN (B), we say that A and B are balanced.
Consequently, |A| = |B| = n. Moreover, we define occ(A) = maxg∈A{mA(g)} as the max-
imum number of duplicates of any gene g in A. Thus, if A and B are balanced genomes
then occ(A) = occ(B). For simplicity, in this case we use only occ. For example, genomes
A = {(◦ c1 −a1 d1 ◦), (◦ b1 c2 ◦), (c3)} and B = {(◦ a1 ◦), (◦ c3 −c1 −b1 ◦), (◦ d1 c2 ◦)} are
balanced, since GN (A) = {a1, b1, c1, c2, c3, d1} = GN (B), and occ = 3.

2.2 DCJ Operations

Rearrangements can change the organization of a genome, i.e., the number of chromosomes
in a genome or the order and the orientation of its genes. In general, such a rearrangement
cuts a genome in two different positions, creating four open ends, and joins these open ends
in a different way. It can be modeled by a double-cut and join (DCJ) operation [15]. Con-
sider, for example, a DCJ applied to genome {(◦ c1 −a1 d1 ◦), (◦ b1 −a2 c2 ◦)}, that cuts
the first chromosome before and after −a1 d1, creating the segments (◦ c1 •), (• −a1 d1 •)
and (• ◦) (the symbol • represents the open ends). If we then join the first with the third
and the second with the fourth open end, we obtain {(◦ c1 −d1 a1 ◦), (◦ b1 −a2 c2 ◦)}.
This DCJ corresponds to the inversion of contiguous genes −a1 d1. DCJ operations can
also correspond to other rearrangements, such as translocations, fusions and fissions [15].

2.3 DCJ Distance and Adjacency Graph

Observe that the DCJ operation alone can only sort balanced genomes. We formally define
the DCJ distance problem:

Problem DCJ-distance(A,B): Given two balanced genomes A and B, compute
their DCJ distance ddcj(A,B), i.e., the minimum number of DCJ operations required
to transform A into B′, such that B′ ∈ [B].

Any sequence of ddcj(A,B) DCJ operations transforming A into B′ ∈ [B] is called an
optimal sequence of DCJ operations.

Given two balanced genomes A and B, DCJ-distance(A,B) can be computed with
the help of the following concepts. First note that, since a gene g has an orientation, we
can distinguish its two ends, also called its extremities, and denote them by gt (tail) and gh

(head). An adjacency in a genome either is telomeric and corresponds to the extremity of a

gene that is adjacent to one of its chromosome ends, or it is an unordered pair of consecutive
extremities in one of its chromosomes. Thus, a genome A can also be defined as a set of adja-
cencies adj(A) of its numbered genes. Given genome A = {(◦ c1 −a1 d1 ◦), (◦ b1 −a2 c2 ◦)},
for example, we have adj(A) = { ct1 , ch1ah1 , at1dt1 , dh1 , bt1 , bh1ah2 , at2ct2 , ch2 }.

Given two balanced genomes A and B, the adjacency graph AG(A,B) [4] is a bipartite
multigraph such that each partition corresponds to the set of adjacencies of one of the two
input genomes, and an edge connects the same extremities of adjacencies in both partitions,
regardless of their index numbers. We say that the edge represents those extremities. The
length of a path or cycle in AG(A,B) is the number of edges it contains.

Without Duplicate Genes When the genomes A and B contain no duplicate genes,
there is a one-to-one correspondence between the set of edges in AG(A,B) and the set
of gene extremities. In this case, vertices have degree one or two and thus the adjacency
graph is a collection of disjoint paths and cycles. Here, problem DCJ-distance can easily
be solved in linear time [4] using the formula

ddcj(A,B) = n− c− i/2 ,

where n = |G(A)| = |G(B)| is the number of genes in any of the two genomes, c is the
number of cycles and i is the number of odd-length paths in AG(A,B).

With Duplicate Genes When genomes have duplicate genes, problem DCJ-distance
becomes NP-hard [13]. In the same paper, the authors present an exact, exponential-time
algorithm for its solution, phrased in form of an Integer Linear Program (ILP).

3 An Approach to Compute the DCJ Distance with Duplicate Genes

Observe that in the presence of duplicate genes, the adjacency graph may contain vertices
of degree larger than two. A decomposition of AG(A,B) is a collection of vertex-disjoint
cycles and paths covering all vertices of AG(A,B). Cycles and paths of a decomposition D
are collectively called components of D.

There can be multiple ways of selecting a decomposition of the adjacency graph. We
need to find one that allows to match each occurrence of a gene in genome A with exactly
one occurrence of the same gene in genome B. In order to build such a decomposition, we
need the following definitions.

Let gi and gj be, respectively, occurrences of the same gene g in genomes A and B. The
edge e that represents the connection of the head of gi to the head of gj and the edge f that
represents the connection of the tail of gi to the tail of gj are called siblings. Two edges are
compatible if they are siblings, or they represent the connection of extremities of distinct
occurrences of the same gene, or they represent the connection of extremities of distinct
genes. Otherwise they are incompatible. A set of edges is compatible if it has no pair of

incompatible edges. A path or cycle C of AG(A,B) is consistent if the set E(C) of edges
of C is compatible. Note that, when constructing a decomposition, by choosing consistent
components one may still select incompatible edges that occur in separate components
(see the three dotted cycles of length 2 in Fig. 1). Thus, consistency cannot be taken into
account in components separately.

a1
t a5

h

a5
h

b2
ha3

t

a1
t b2

t b2
ha2

t a2
ha3

t a3
ha4

t a4
ha5

t

a3
ha4

t a4
ha5

ta2
hb2

tb1
ha2

ta1
hb1

t

a 1
−

1
h a 2
−

1
t b 2−

2h a 3−
2t a 4

−
4

h a 5
−

5
t

b
1−2

t b 1−
1h

a 4−
3

h

a
4−5

t

a 5−
4t

a
3−4

h

b1
t b1

ha1
h

a 5
−

5
h

Fig. 1: Examples of an inconsistent cycle (dashed edges) and an inconsistent set of cy-
cles (dotted edges): the adjacency graph for A = (◦ a1 b1 a2 b2 a3 a4 a5 ◦) and
B = (◦ b1 −a1 b2 a2 a3 a4 a5 ◦), with some edges omitted. For the sake of clarity, edges
are labeled with extremities they represent. For example, an edge labeled gti−j represents
extremities gti from A and gtj from B.

A set of paths and cycles {C1, C2, . . . , Ck} of AG(A,B) is consistent if and only if
E(C1) ∪ E(C2) ∪ · · · ∪ E(Ck) is compatible. A consistent decomposition D of AG(A,B)
is a consistent set of vertex-disjoint cycles and paths that cover all vertices in AG(A,B).
Observe that in a consistent decomposition D we have only pairs of siblings, i.e., either
an edge e and its sibling f are in D or both e and f are not in D. Thus, a consistent
decomposition corresponds to a matching of occurrences of genes in both genomes and
allows us to compute the value

dD = n− cD − iD/2 ,

where n = |GN (A)| = |GN (B)| and cD and iD are the numbers of cycles and odd-length
paths in D, respectively. This provides a way to compute the DCJ distance.

Theorem 1. Given two genomes A and B, possibly with duplicate genes, the solution for
the problem DCJ-distance is given by the following equation:

ddcj(A,B) = min
D∈D
{dD} ,

where D is the set of all consistent decompositions of AG(A,B).

Proof. Since a consistent decomposition allows to match duplicates in both genomes, clearly
ddcj(A,B) ≤ minD∈D{dD}. Now, assume that ddcj(A,B) < minD∈D{dD}. By definition, this

distance corresponds to an optimal rearrangement scenario from A to some B′ ∈ [B] and
therefore implies a matching between the genes of A and the genes of B′. Furthermore,
this matching gives rise to a consistent decomposition D′ of AG(A,B) such that dD′ <
minD∈D{dD}, which is a contradiction. ut

A consistent decomposition D such that dD = ddcj(A,B) is said to be optimal.

Once a consistent decomposition D of the adjacency graph AG(A,B) is found, fol-
lowing [4] it is easy to derive in linear time a DCJ rearrangement scenario with dD DCJ
operations transforming A into B. Moreover, an optimal consistent decomposition allows
to find all optimal rearrangement scenarios [5].

3.1 Capping Telomeres

A general technique for simplifying algorithms that handle genomes with possibly unequal
telomeric adjacencies is called capping and consists of transforming each telomeric into
a non-telomeric adjacency [9, 12, 16]. Let null extremities be represented by τ and null
adjacencies be represented by ττ . Given two genomes A and B with 2i and 2j telomeres,
respectively, in both genomes each telomeric adjacency x is replaced by the adjacency xτ .
Furthermore, in order to add the same number of null extremities to both genomes, |j − i|
null adjacencies ττ are added to genome A, if i < j, or to genome B, if j < i. Let Aτ and
Bτ be the new sets of adjacencies obtained by this procedure. Observe that in AG(Aτ , Bτ)
each null extremity of Aτ must be connected to each null extremity of Bτ .

Observe that any consistent decomposition D of AG(Aτ , Bτ) is composed of cycles only,
allowing to compute the value

dD = n− cD ,

where n = |GN (A)| = |GN (B)| and cD is the number of cycles in D.

Theorem 2. Let A and B be two genomes and let Aτ and Bτ be the genomes obtained
from A and B by capping telomeric adjacencies. Then,

ddcj(A,B) = min
D∈Dτ

{dD} ,

where Dτ is the set of all consistent decompositions of AG(Aτ , Bτ).

Proof. Each consistent decomposition D of AG(A,B) corresponds to a consistent decom-
position D′ of AG(Aτ , Bτ), such that each path in D becomes a cycle in D′. The null
extremities added to both genomes ensure that dD = dD′ : in the formula to compute dD′

each path adds one to the term cD but (i) each even path has two new null extremities
and adds one to the term n and (ii) each pair of odd paths has two new null extremities
and adds one to the term n and decreases two from the term iD. ut

4 Approximating the DCJ Distance by Cycles of Length 2

All definitions and properties for the DCJ distance for balanced genomes presented from the
beginning to here work properly for the general case, where genomes are multichromosomal.
However, as we will see in this section, to solve the DCJ distance problem we use an
intermediate procedure whose inputs are strings. Thus, from now on, we restrict our inputs
for linear unichromosomal genomes. The extension to general genomes is left as an open
problem.

As mentioned in the previous section, the adjacency graph for balanced and capped
genomes is a collection of cycles and thus we have to find a disjoint cycle decomposition of
the adjacency graph to compute the DCJ distance according to Theorems 1 and 2. Recall
that it is an NP-hard problem [13].

Given a consistent decomposition D ∈ Dτ of an adjacency graph AG(Aτ , Bτ), we can
see that

dD = n− cD = n− c2 − c> ,

where n = |GN (A)| = |GN (B)|, c2 is the number of cycles of length 2, and c> is the number
of cycles of length longer than 2 in D. A naive approach to solve the DCJ distance problem
could be, as a first step, maximizing c2. However, this strategy is not able to solve properly
the DCJ distance problem for two main reasons: (i) finding the maximum number of cycles
of length 2 is itself an NP-hard problem, as we will justify below; and (ii) this strategy is
not optimal to solve the DCJ distance, as we can see in Fig. 2.

The problem of finding a decomposition maximizing the number of cycles of length 2 is
equivalent to the adjacency similarity problem [3], the complement of the breakpoint dis-
tance problem, where one wants to minimize n−c2. Moreover, from an optimal solution for
the adjacency similarity (or the breakpoint distance) problem it is possible to approximate
the DCJ distance, as stated in Lemma 1.

Lemma 1. A consistent decomposition D′ of AG(Aτ , Bτ) containing the maximum num-
ber of cycles of length 2 is a 2-approximation for the DCJ-distance problem.

Proof. Let c∗2 and c∗> be the number of cycles of length 2 and longer than 2, respectively,
of an optimal decomposition D∗ of AG(Aτ , Bτ). Let c′2 and c′> be the numbers analogous
to c∗2 and c∗> with respect to the decomposition D′. It it easy to see that c∗2 +2c∗> ≤ n, then

0 ≤ n− c∗2 − 2c∗>

n− c∗2 ≤ n− c∗2 − 2c∗> + n− c∗2
n− c∗2 ≤ 2(n− c∗2 − c∗>) . (1)

(a)

(b)

Fig. 2: Consistent decompositions for genomes A = (◦ −c a f −e d −a b i −h g −b ◦) and
B = (◦ c a d e f −a b g h i −b ◦), where solid edges are in both decompositions. Gene
indexes were omitted. (a) A consistent decomposition D′ containing the maximum number
of cycles of length 2, composed of 1 cycle of length 2, 1 cycle of length 8, 1 odd path of
length 1 and 1 odd path of length 3, resulting in dD′ = 11 − 4− 2/2 = 7. (b) An optimal
consistent decomposition D∗, composed of 4 cycles of length 4 and 2 odd paths of length
3, resulting in dD∗ = 11− 4− 2/2 = 6.

Therefore, we have

dD′

dD∗
=
n− c′2 − c′>
n− c∗2 − c∗>

≤
n− c∗2 − c′>
n− c∗2 − c∗>

(2)

≤ n− c∗2
n− c∗2 − c∗>

≤
2(n− c∗2 − c∗>)

n− c∗2 − c∗>
(3)

= 2 , (4)

where (2) holds since c′2 ≥ c∗2, and (3) is true from (1). ut
Recall that the adjacency similarity and breakpoint distance problems are both NP-

hard [3, 6]. The former can be approximated by a factor of 4 for balanced genomes [1].
However, an approximation with constant approximation factor for the former problem

does not lead to an approximation with constant approximation factor for the latter. The
breakpoint distance for balanced genomes has a 1.1037-approximation when occ = 2 [8],
a 4-approximation when occ = 3 [8], and an O(k)-approximation when occ = k [11].
Those approximations were developed for the minimum common string partition problem
(MCSP) [14], which is equivalent to the breakpoint distance problem [10].

5 Finding Consistent Decompositions

In this section we present a linear time approximation algorithm Consistent-Decom-
position, which receives two linear unichromosomal balanced genomes A and B with
occ = k and returns a consistent decomposition for genomes A and B, which is an O(k)-
approximation for the DCJ distance. The main steps of Consistent-Decomposition can
be briefly described as follows. First, from the input genomes, we obtain capped genomes
and then we build the adjacency graph of them. Next, we use an approximation for the
(signed) minimum common string partition problem, which gives an approximation for
the number of breakpoints in the adjacency graph. After that we clean the chosen cycles
of length 2 from the adjacency graph. Following, we iteratively collect arbitrary cycles
of length longer than 2, cleaning up the remaining graph after each iteration. Finally, we
return the set of collected cycles as a consistent decomposition of the prior adjacency graph.

Algorithm 1 Consistent-Decomposition(A,B)

Input: balanced genomes A and B such that occ = k
Output: a consistent decomposition of AG(A,B)
1: Add null extremities/adjacencies to A and B and obtain Aτ and Bτ , respectively
2: Build the adjacency graph AG(Aτ , Bτ)
3: Obtain an O(k)-approximation S2 for the set of cycles of length 2 in AG(Aτ , Bτ) using the O(k)-

approximation algorithm for the minimum common string partition problem [11]
4: Remove from the adjacency graph vertices covered by S2 and all edges incompatible with edges of S2
5: Decompose the remaining graph into consistent cycles by iteratively finding a consistent cycle C and

then removing from the graph vertices covered by C and edges incompatible with edges of C, collecting
them in S>

6: Remove null extremities/adjacencies of cycles in S2 ∪ S> and obtain a consistent decomposition D of
AG(A,B)

7: Return D

Step 1 of Consistent-Decomposition consists of capping telomeres from the given
balanced genomes A and B as described in Section 3.1. In Step 2, Consistent-Decom-
position builds the adjacency graph for capped genomes Aτ and Bτ . After that, Step 3
collects cycles of length 2 using an O(k)-approximation algorithm for the minimum common
string partition problem [11] as described in Section 4. Step 4 removes from AG(Aτ , Bτ)
vertices covered by cycles in S2 and edges incompatible with edges of cycles in S2. Step 5

constructs the set S> by decomposing the remaining graph into consistent cycles. Itera-
tively, it chooses a consistent cycle C and then removes from the remaining graph vertices
covered by C and edges incompatible with edges of C. Hence the algorithm does not choose
an inconsistent set of components. Further, this guarantees that for every edge in the de-
composition, its sibling edge will also be in the decomposition, avoiding for example the
selection of the path of length 1 composed of the edge that connects ah5 of A to ah5 of
B and then the cycle of length 2 composed of the edge that connects ah4 of A to ah3 of
B and the edge that connects at5 of A to at4 of B in Fig. 1. In order to obtain the con-
sistent decomposition of AG(A,B), Consistent-Decomposition removes in Step 6 null
extremities/adjacencies of cycles in S2 ∪ S>, returning the resulting set D in Step 7.

There is one implicit but important step in the algorithm above, which is to obtain
the set S2 given the output of the k-MCSP approximation algorithm [11]. This algorithm
outputs a common string partition (A,B). Both A and B are composed of the same set
of substrings, in different orders and possibly reversed. Each substring of length l > 1 in
A and B induces l − 1 preserved adjacencies in A and B. First of all, we must normalize
strings in A and B, that is, for each substring s and its reverse r, only s appears in A and B
(we reverse each occurrence of r, resulting in s). Then we just have to map each substring
in A to the same substring in B (in case of multiple occurrences, we choose any of them),
which can be performed using a prefix tree. Thus this implicit step can be done in linear
time on the adjacency graph size.

Lemma 2. Given balanced genomes A and B such that |A| = |B|, the running time of
Consistent-Decomposition algorithm is linear on the size of the corresponding adja-
cency graph.

Proof. Let m be the size of AG(Aτ , Bτ). It is easy to see that Steps 1 and 2 of Algorithm 1
have both linear running time, i.e. O(m). The implementation of the k-MCSP [11] in Step 3
with suffix trees [7] and disjoint sets has running time O(m) (note that m = O(n2)). The
running time of Step 4 is O(m) since we have just to traverse vertices and edges of the
remaining adjacency graph. Step 5 consists of collecting cycles arbitrarily, and therefore
its running time is also linear, we just have to walk in AG(Aτ , Bτ) finding cycles. To be
sure we walk only in consistent paths, we can use a hash table of size Θ(n) and store,
for each edge of previously chosen cycles in Steps 1 to 5, genes of Aτ (Bτ) associated to
genes of Bτ (Aτ). For instance, the selection of an edge representing the connection of
extremities ati of Aτ and atj of Bτ is consistent if both ai and aj are associated with no gene
of Bτ and Aτ , respectively, or both are already associated with each other (this edge is the
sibling of a previously chosen edge). This consistency check takes O(1) time. The last step
(Step 6) is similar to Step 4 and thus has running time O(m). Therefore, Consistent-
Decomposition has running time O(m). ut

To conclude this section, we present the following result which establishes an approxi-
mation factor for DCJ-distance.

Theorem 3. Let A and B be balanced genomes such that occ = k. Given a common string
partition (A,B) with approximation factor O(k) for the k-MCSP problem, a consistent
decomposition D of AG(A,B), containing cycles of length 2 reflecting preserved adjacencies
in (A,B), is an O(k)-approximation for the DCJ-distance problem.

Proof. Let c∗2 and c∗> be the number of cycles of length 2 and longer than 2, respectively,
of an optimal decomposition D∗ of AG(A,B). Let S2 be the set of cycles of length 2
reflecting preserved adjacencies in (A,B), and let S> be an arbitrary decomposition of
cycles in AG(A,B) \ S2. Let D = S2 ∪ S>, a consistent decomposition, c2 = |S2|, and
c> = |S>|. From [11] we have an O(k)-approximation for the k-MCSP problem, and then
n−c2 ≤ `(n−c′2), where ` = O(k) and c′2 is the number of cycles of length 2 in a consistent
decomposition D′ with maximum number of cycles of length 2. Hence,

dD
dD∗

=
n− c2 − c>
n− c∗2 − c∗>

≤ ` (n− c′2)− c>
n− c∗2 − c∗>

≤ ` (n− c′2)
n− c∗2 − c∗>

≤ 2`

(
n− c′2 − c′>
n− c∗2 − c∗>

)
(5)

≤ 4` , (6)

where (5) is analogous to (1) and (6) holds from (4), both in the proof of Lemma 1. ut

6 Experimental Results

We have implemented our approximation algorithm in C++, with the addition of a linear
time greedy heuristic for the decomposition of cycles not induced by the k-MCSP approxi-
mation. The experiments for this approach were performed on an Intel i3 3.3GHz machine.

We compare our algorithm with Shao et al.’s ILP [13] on simulated datasets. Given two
genomes, the ILP based experiments first build the adjacency graph, followed by capping
of the telomeres, fixing some safe cycles of length two, and finally invoking an ILP solver
to obtain an optimal solution with a time limit of 2 hours.

Following [13], we simulate artificial genomes with segmental duplications and DCJs.
We uniformly select a position to start duplicating a segment of the genome and place
the new copy to a new position. From a genome of s distinct genes, we generate an an-
cestor genome with 1.5s genes by randomly performing s/2l segmental duplications of
length l, resulting in an average k = 1.5. Then we simulate two extant genomes from the
ancestor by randomly performing r DCJs (reversals) independently. Thus, the simulated

evolutionary distance between the two extant genomes is 2r. We set s = 1000 and test three
different lengths for segmental duplications (l = 1, 2, 5). We also vary the r value over a
range 200, 220, . . . , 500. Figure 3 shows the average difference “computed number of DCJs−
simulated evolutionary distance”, taking as input five pairs of genomes for each combina-
tion of l and r, while Fig. 4 shows the average running time. Note that, although the DCJ
distance is unknown whenever the ILP solver is stopped after the time limit, it is always
less than or equal to the simulated evolutionary distance for these artificial genome pairs.

400 500 600 700 800 900 1000

−200

−150

−100

−50

0

50

100

Simulated evolutionary distance

D
iff

er
en

ce
o
f

th
e

co
m

p
u
te

d
n
u
m

b
er

o
f

D
C

J
s

Approx., l = 1

Approx., l = 2

Approx., l = 5

ILP, l = 1

ILP, l = 2

ILP, l = 5

Fig. 3: The computed number of DCJs vs. the simulated evolutionary distance for s = 1000.

The difference of the number of DCJs (blue lines in Fig. 3) calculated by our approxi-
mation algorithm remains very close to the simulated evolutionary distance for small values
of l. Moreover, it remains roughly the same for the same value of l even for greater values
of r. The values obtained by the ILP approach (red lines in Fig. 3) are very close to those
obtained by the approximation algorithm and to the simulated evolutionary distance from
the simulations for l ≤ 2 and smaller values of r. However, beyond some point the DCJ
distance calculated by the ILP gets even lower than the simulated evolutionary distance in
the simulations, showing the limitations of parsimony for larger distance ranges.

Regarding the running time, our implementation time increases slowly from ≈ 0.03
(2r = 400) to ≈ 0.08 seconds (2r = 1000), on average, according to Fig. 4(a), while the
ILP approach takes ≈ 0.3 seconds to finish for smaller values of r (where the preprocessing
step fixes a considerable amount of cycles of length 2 in the adjacency graph), always
reaching the time limit of 2 hours beyond some point, as displayed in Fig. 4(b).

400 500 600 700 800 900 1000

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Simulated evolutionary distance

T
im

e
(s
)

Approx., l = 1

Approx., l = 2

Approx., l = 5

(a)

400 500 600 700 800 900 1000

0

2000

4000

6000

Simulated evolutionary distance

T
im

e
(s
)

ILP, l = 1

ILP, l = 2

ILP, l = 5

(b)

Fig. 4: Execution time for s = 1000 of (a) approximation and (b) ILP based programs.

7 Conclusion

In this paper, we have proposed a new approximation algorithm for the DCJ distance for
genomes where each gene occurs the same number of times in each input genome and there
exists at least one gene that occurs more than once in one of them. This so called DCJ
distance with duplicates for balanced genomes problem is NP-hard [13]. Our algorithm
works on input genomes where the amount of duplicates is bounded by O(k), where k is
the maximum number of duplicates of any gene in the input genomes. The approximation
factor of our algorithm is O(k). Furthermore, our algorithm has linear running time on the
adjacency graph size. As experiments on simulated genomes have shown, our algorithm is
very competitive both in efficiency and quality of the solutions, in comparison to the ILP
exact solution.

Due to an intermediate step which approximates the minimum common string partition
problem, our algorithm works properly only on linear unichromosomal genomes as input. A
natural extension of this work is modifying our algorithm to work with multichromosomal
genomes as well. Moreover, we have to extend our experiments, running our algorithm on
more simulated data sets and also on biological data sets.

References

1. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: Efficient tools for computing the number
of breakpoints and the number of adjacencies between two genomes with duplicate genes. Journal of
Computational Biology 15(8), 1093–1115 (2008)

2. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: On the approximability of comparing
genomes with duplicates. Journal of Graph Algorithms and Applications 13(1), 19–53 (2009)

3. Angibaud, S., Fertin, G., Rusu, I., Vialette, S.: A pseudo-boolean framework for computing rearrange-
ment distances between genomes with duplicates. Journal of Computational Biology 14(4), 379–393
(2007)

4. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Proc. of WABI
2006. LNBI, vol. 4175, pp. 163–173 (2006)

5. Braga, M.D.V., Stoye, J.: The solution space of sorting by DCJ. J. Comp. Biol. 17(9), 1145–1165 (2010)
6. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J.H. (eds.)

Comparative Genomics, pp. 207–211. Kluwer Academic Publishers, Dortrecht (2000)
7. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proc. of IEEE/FOCS 1997. pp.

137–143 (1997)
8. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partition problem: Hardness and ap-

proximations. Eletronic Journal of Combinatorics 12(R50) (2005)
9. Hannenhalli, S., Pevzner, P.: Transforming men into mice (polynomial algorithm for genomic distance

problem). In: Proc. of FOCS 1995. pp. 581–592 (1995)
10. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint distance. In: Proc. of

RECOMB-CG 2010. Lecture Notes on Bioinformatics, vol. 6398, pp. 83–92 (2010)
11. Kolman, P., Waleń, T.: Reversal distance for strings with duplicates: Linear time approximation using

hitting set. The Electronic Journal of Combinatorics 14(1), R50 (2007)
12. Shao, M., Lin, Y.: Approximating the edit distance for genomes with duplicate genes under DCJ,

insertion and deletion. BMC Bioinformatics 13(Suppl 19), S13 (2012)
13. Shao, M., Lin, Y., Moret, B.: An exact algorithm to compute the double-cut-and-join distance for

genomes with duplicate genes. Journal of Computational Biology 22(5), 425–435 (2015)
14. Swenson, K., Marron, M., Earnest-DeYong, K., Moret, B.M.E.: Approximating the true evolutionary

distance between two genomes. In: Proc. of ALENEX/ANALCO 2005. pp. 121–129 (2005)
15. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation,

inversion and block interchanges. Bioinformatics 21(16), 3340–3346 (2005)
16. Yancopoulos, S., Friedberg, R.: DCJ path formulation for genome transformations which include inser-

tions, deletions, and duplications. Journal of Computational Biology 16(10), 1311–1338 (2009)

